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Overview

The topology induced by a norm on a vector space is a very strong
topology in the sense that it has many open sets.

Some Advantages (when there are more open sets) :

If we consider a function whose domain is such a space (topology induced
by a norm – it has many open sets), the function finds it particularly easy
to be continuous.

Example 1.

Let X be a non-empty set. Every function defined on X with discrete
topology is continuous.
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Overview

Some Disadvantages (when there are more open sets) :

The formulation in terms of open covers always having finite subcovers is
really the “right” definition of compactness.

It expresses that the spirit of compactness is that there are not “too many”
open sets in the topology, in the sense that a finite number will suffice to
cover the space. The trouble is that there are too many open sets, so
there are too many open covers and not all of them have finite subcovers.

Example 2.

An infinite discrete space cannot be compact because there are too many
open sets (every point is open).

We can think of the term “compact” as literally applying to the topology,
not to the underlying point set.
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Overview

Some Disadvantages (when there are more open sets) :

An infinite dimensional normed space (with the topology induced by the
norm) always has so many open sets that its closed unit ball cannot be
compact.

Because of this, many familiar facts about finite dimensional normed
spaces that are based on the Heine-Borel property cannot be immediately
generalized to the infinite-dimensional case.

A topological is said to be Heine-Borel property if every closed and
bounded subset of the Euclidean space is compact.

The theorem is essentially equivalent to asserting the “completeness of the
real numbers : any nonempty bounded subset of R has a least upper
bound”.
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Topology Induced by Metric

Let X be a non-empty set.

If τ is a topology induced by the metric d defined on a metric space X ,
then the open sets are all subsets of X that can be realized as the unions
of open balls

B(x0, r) = {x in X : d(x0, x) < r}

where x0 in X and r > 0.

That is, it is the topology generated by the basis consisting of the set of
all open ε-balls in the metric space (X , d).

The topological space which is so induced is also known as the
topological space associated with the (given) metric space.

The metric space whose metric induces this topology can be said to give
rise to the topological space.
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Overview

One of the main purposes of this course is to study topologies for normed
spaces that are in general weaker than the norm topology, in the sense
that they have fewer open sets, but that are still strong enough to have
useful properties.

In general, topologies are not always induced by metrics, so familiar metric
space arguments based on the convergence of sequences cannot be used in
their usual form.

However, most of those arguments can be adapted to general topological
spaces if sequences are replaced by more general objects called nets, whose
behavior is much like that of sequences.

In the lecture, we shall discuss about “nets”.
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Topology

Definition 3.
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Local basis for τ at a point x of X

Definition 4.

How small we choose an open set U containing x , we can find a member

B of Bx

inside U.
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Basis for the topology

Definition 5.

1. τ is the smallest toplogy containing B.

2. The term “basis” is associated with a topology.
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Basis for the topology

Let τ be a topology for a set X and B be a collection of subsets of X .
The following are equivalent:

1. B is a basis for τ .

2. Every member of B is open (necessary condition) and every open set
is union of members of B.

3. Every member of B is open (necessary condition) and for each x in
X , the family

{B : B ∈ B, x ∈ B}

is a local basis for τ at x .
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Subbasis for the topology

Definition 6.

For any subcollection S of the power set P(X ) there is a unqiue topology
having S as a subbasis.

However, there is no unique basis for a given topology.
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Subbasis for the topology

We can start with a fixed topology and find subbasis for that topology,
and we can also start with an arbitrary subcollection of the power set
P(X ) and form the topology generated by that subcollection.

Example

1. The usual topology on the real numbers R has a subbasis consisting
of all semi-infinite open intervals either of the form

(−∞, a) or (a,∞),

where a and b are real numbers :

(a, b) = (−∞, b) ∩ (a,∞) for a < b.
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Subbasis for the topology : Examples

1. A subbasis is formed by taking the subfamily{
(a, b) : a, b ∈ Q

}
.

2. The subbasis consisting of all semi-infinite open intervals of the form

(−∞, a) alone, a ∈ R

does not generate the usual topology.
The resulting topology does not satisfy the T1-separation axiom.

3. Once nice fact about subbases is that continuity of a function need
only be checked on a subbasis of the range.

Let S be a subbasis for Y . A function f : X → Y is continuous iff
f −1(U) is open in X for each U in S,
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Subbasis for the topology : A result

There is one significant result concerning subbasis, due to James Waddell
Alexander II.

Theorem 7 (Alexander Subbasis Theorem).

Let X be a topological space with a subbasis S. X is compact iff every
cover by elements of the subbase S has a finite subcover.

Using Alexander Subbasis Theorem, the following results have short
proofs:

Heine-Borel Theorem

Tychonoff Theorem.
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Bases and Subbases

Bases and subbases “generate” a topology in different ways.

Every open set is a union of basis elements. The open sets in a
topology are all possible unions of basis elements.

Every open set is a union of finite intersection of subbasis elements.
The open sets in a topology are all possible unions of finite
intersections of subbasis elements.

Every basis for a topology is a subbasis for that topology.

Every member of a basis or subbasis for a topology belongs to that
topology.
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Subbasis for the topology

Exercise 8.

Let X = {a, b, c} and S =
{
{a, b}, {a, c}

}
.

1. Find the basis B generated by S.

2. Find the topology τ generated by B.

3. Does the topology τ contain the empty set Φ ?

4. Is S a basis for τ?

5. Find another subbasis for τ .
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Subbasis but not a basis : Example

Exercise 9.

The set of all infinite rectangles (strips){
R× (a, b) : a, b ∈ R

}
forms a subbasis for the usual topology on R2 but not a basis.

There are open in R2 which we cannot get from unioning these infinite
rectangles together, but they can be made by unioning intersects of these
rectangles.
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How does the topology generated by a subbasis contain
the empty set Φ?

Every element in the empty set is a pink elephant. This is a true
statement, since there are no elements in the empty set. These kind of
statements are called vacuous statements.
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How does the topology generated by a subbasis contain
the empty set Φ?

Any statement that says “For all elements in the empty set holds that · · · ”
is always true, no matter what “· · · ” is.

In order for Φ ∈ τ , we must apply definition. That is, we must show that
for every x ∈ Φ, “there is a some B ∈ B such that x ∈ B ⊆ Φ”. This is
always true.

Indeed, if the statement were false, then there would exist an x ∈ Φ that is
not in some B ∈ B such that B ⊆ Φ, which is automatically false because
there are no elements in the empty set.
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Why is subbasis (for a topology) important?

We have the following relation:

S ⊆ B ⊆ τ.

We require more basis elements than subbasis elements.

For this reason, we can take a smaller set as our subbasis, and that
sometimes makes proving things about the topology easier.
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Topological product of family of topological spaces

Definition 10.
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Basic Definitions

All definitions are given based on open sets or neighbourhoods of points.

Definition 11.
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Separation Axioms

Definition 12.
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Separation Axioms

Definition 13.
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Separation Axioms

Exercises 14.

Prove the following :

1. A topological space is a T1 space iff each of its one-element subsets is
closed.

2. T4 ⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

Which implication requires an application of Urysohn’s lemma?
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Basic Definitions

Definition 15.
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Compact / Locally Compact

Definition 16.
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Countably Compact / Frechet Compact

Definition 17.
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Sequentially Compact

In the following definitions, sequences are used.

Definition 18.
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Relationships between the various types of compactness

Exercises 19.

Prove the following :

1. In a metric space, the properties of compactness, countable
compactness, limit point compactness, and sequential compactness
are equivalent, as are the corresponding relative properties.

2. Compactness implies countable compactness.

3. Countable compactness and limit point compactness are equivalent in
Hausdorff spaces.
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Sequential testing fails in some topological spaces

Not every topology permits such straightforward sequential testing for
continuity and closure.

Some topological spaces have subsets that are sequentially closed but not
closed.

Exercise 20.

Let X be the interval [0, 1] with the topology given by declaring that a
subset of X is open if it does not contain 0 or its complement is countable.

Verify that X is a Hausdorff topological space.

Show that the subset (0, 1] of X is sequentially closed but not closed.
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Sequential testing fails in some topological spaces

Consider a topological space having subsets that are sequentially closed
but not closed.

Though it might seem that sequential methods useful in metric spaces
must be abandoned when working with topologies of this sort, many of
those methods extend with very little modification to all topological spaces
if sequences are replaced by nets.
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Overview for nets

In a metric space,

Openness : A is open iff no sequence with terms outside of A has a
limit inside A.

Continuity : For any topological spaces X and Y , a function
f : X → Y is continuous iff f preserves convergence (for each x in X ,
whenever xn → x in X , also f (xn)→ f (x) in Y ).

Compactness : A metric space is compact iff every sequence has a
converging subsequence (sequentially compact).
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What about these equivalences in a general topological
space?

In general, these equivalences may fail.

Sequences do not fully encode all information about

open sets.

functions between topological spaces.

compact sets.

Misconceptions (in our mind) :

In a general topological space,

compactness would always be equal to sequence compactness.

If f preserves convergence, then f is continuous.
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Overview

It will be shown that how sequences might fail to characterize
topological properties such as openness, continuity and compactness.

Nets will be defined and it will be shown that how nets succeed where
sequences fail.

Nets allow analogue results to hold in the context of topological
spaces that do not necessarily have a first countable basis.
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Overview

Convergence of sequences doesn’t give us full information on the topology.

For example, the discrete topology and the countable complement
topology on an uncountable set X have the same converging sequences
(eventually constant sequences), but the discrete topology is stictly finer
(bigger) then the countable complement topology.

The discrete topology is sequential, but the countable complement
topology contains sequentially open sets which are not open.
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Overview

Convergence of sequences works fine when the space is first countable
because a countable basis at a point allows us to approach that point
nicely with a sequence. However, if a point x does not have a countable
basis, then sequences might not succeed in getting close to the point x ,
eventually in every neighbourhood of x .

Sequences fall short in two respects : They are too short and too thin.
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Sequentially Open

In a topological space X , a set A is open if every a ∈ A has a
neighbourhood contained in A.

A is sequentially open if no sequence with terms outside of A (in X\A)
has a limit in A.

Theorem 21.

In a topological space X , if A is open, then A is sequentially open.

Outline : Suppose A is open. Take any (xn) in X\A and any y ∈ A.
Claim : y cannot be a limit point of (xn) because X\A is closed.

P. Sam Johnson (NIT Karnataka) Nets in Topology March 20, 2017 38 / 68



Sequentially Open

Theorem 22.

If X is a metric space, then the two notions of open and sequentially open
are equivalent.

Outline : Suppose A is open. Take any (xn) in X\A and any y ∈ A.
Claim : y cannot be a limit point of (xn) because X\A is closed.

Converse, suppose A is not open. Then there exist y ∈ A such that every
neighbourhood of y intersects X\A. The sequence
xn ∈ (X\A) ∩ B(y , 1/n). Then (xn) in X\A converges to y in A, a
contradiction.
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Sequentially Open

Theorem 23.

Let X be a topological space. Then A ⊆ X is sequentially open iff every
sequence with a limit in A has all but finitely many terms in A.

Outline : Using defintion of sequentially open, we shall prove the
following :

A ⊆ X is not sequentially open iff there exists a sequence with a limit in A
has finitely many terms in A.

Definition 24.

A topological space is sequential when “any set A is open iff A is
sequentially open”.
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Not every topological space is sequential – Example

Let X be an infinite set. We define the countable-complement topology
on X by declaring the empty set to be open, and a non-empty subset U of
X to be open if X\U is countable.

τcc =
{

U ⊆ X : X\U is countable
}
∪ {∅}.

Exercise 25.

1. Prove that τcc is a topology.

2. If X is countable, then the countable-complement topology is just the
discrete topology, as the complement of any set is countable and thus
open.

3. A subset A of X is closed in the topology τcc iff A = X or A is
countable.
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The topology τcc has the following additional properties :

The countable-complement topology on an uncountable set gives an
example of a topological space that is not weakly countably compact
(but it is pseudo compact).

Suppose X has at least 2 points. Then (X , τcc) is connected iff X is
an uncountable set.

The real numbers with the topology τcc fail to have the
Bolzano-Weierstrass property, and hence (R, τcc) is not compact.
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Not every topological space is sequential – Example

Let X be an uncountable set. The countable-complement topology on
X

τcc =
{

U ⊆ X : X\U is countable
}
∪ {∅}.

is not sequential.

Convergence sequences in the topology τcc :

Suppose (xn) ⊆ X\A has a limit y . Then for every neighbourhood U of y ,
we can find N such that xn ∈ U for all n ≥ N. We now consider the
(special) neighbourhood of y

(R\{xn}) ∪ {y}.

Note that (R\{xn}) may not be a neighbourhood of y (what happens if
xn = y for some n?). This neighbourhood should contain xn for n large
enough. Hence the sequence is eventually constant.
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Not every topological space is sequential – Example

Claim : X has a subset which is sequentially open but not open.

Consider {x}. Claim : {x} is sequentially open. Suppose {x} is not
sequentially open. Then there exists a sequence (xn) in X\A such that xn
converges to some y ∈ A, a contradiction to choice of xn in X\A.

There is nothing special about {x}. This above argument is true for any
subset A of X . Thus every subet of X is sequentially open.

Since X is uncountable, τcc ( τdiscrete = P(X ). Then X has a subset
which is not open.
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Every first countable space is sequential.

Still, a large class of topological spaces is sequential.

Definition 26.

A countable basis at a point x is a countable set{
Un : n ∈ N

}
of neighbourhoods of x such that for any neighbourhood V of x, there
exists an n ∈ N such that Un ⊆ V .

A topological space is first countable if every point has a countable basis.
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Every first countable space is sequential.

Theorem 27.

Every first countable space X (and hence every metric space) is sequential.

Outline : Let A be a sequentially open. Suppose A is not open. Then
there exists y ∈ A such that every neighbourhood of y intersects X\A.

Let {Un} be a countable basis at y . For every n, we have
xn ∈ X\A ∩ (∩ni=1Ui ).

Claim : (xn) converges to y ∈ A, a contradiction.
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Continuous functions from sequential spaces into another
topological spaces

Sequential spaces are also exactly those spaces X where sequences can
correctly define continuity of functions from X into another topological
space.

Theorem 28.

The following are equivalent for any topological space X :

1. X is sequential ;

2. for any topological space Y and function f : X → Y , f is continuous
iff f preserves convergence.
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Net

Definition 29.
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Observations

On conditions (2) and (3) in definition of net

We don’t require that a pair of elements has a least upper bound,
we just require that some upper bound exists.

Every finite subset of I has a upper bound in I .
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History

E.H. Moore and H.L. Smith introduced nets in 1922 as the basis for a
general theory of limits.

Mauro Picone devised the same theory independently in a book that
appeared the next year.

The term net was actually first used by J.L. Kelley in a 1950 paper on
topological convergence. The terminology was not Kelley’s invention,
though. Kelley has wanted to call such an object a “way”.

After some prodding by Kelley, Norman Steenrod suggested the term
“net” as a substitute for “way”.
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Examples for Nets

For each net in a topological space X , there corresponds a directed set I
which gives a function f : I → X .

The αth term f (α) of the net is often denoted by xα, and the entire net is
often denoted by (xα)α∈I .

1. Every sequence is a net, with the directed set being N in its natural
order.

2. The set R with its natural order is a directed set, so this order makes
every function with domain R into a net.
By analogy with sequences, it is said that xα precedes xβ in a net
when α � β.

Do these nets have first terms?
How many predecessors are there for each term in a net?
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Example for a net

The set R2 can be made into a directed set by declaring that

(α1, β1) � (α2, β2)

whenever α1 ≤ α1.

If x(α,β) = α + β for each (α, β) in R2, then (x(α,β)) is a net in R2.

Does � satisfy the “transitive property”?
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Example for a net

We have seen an example that nets may not have first terms.

Exercise 30.

Give an example of a net which illustrates the following :

The index set for a net can be finite.

Nets can have last terms.

Nets can have multiple “first” terms, that is, terms not preceded by
other terms.

The index set for a net need not be a chain.

It can be concluded that several important ways in which nets can differ
from sequences.
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Here is a type of net that is useful in many topological
arguments.

Suppose that X is a topological space and that x ∈ X .

Let I be the collection of all neighborhoods of x with the relation � given
by declaring that

U � V

when U ⊇ V (the direction is given by reverse inclusion).

Then I is a directed set. If xU ∈ U for each U in I , then (xU) is a net in X .
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Convergence of nets

A sequence in a topological space converges to an element of the space if,
for every neighbourhood of that element, all terms of the sequence from
some term onward lie in that neighborhood.

This definition generalizes immediately to nets.

Definition 31.

Let (xα)α∈I be a net in a topological space X and let x be an element of
X . Then (xα) converges to x, and x is called a limit of (xα), if, for each
neighbourhood U of x, there is an αU in I such that xα ∈ U whenever
αU � α.
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Convergence of nets – Examples

The set R with its natural order is a directed set, so this order makes every
function with domain R into a net.

Consider a net of a bounded increasing function.

Where does the net converge?
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Convergence of nets – Examples

Let I be a three-element set
{

u, v ,w
}

. Define � on I by letting these be

all of the corresponding relations :

α � α for each α ∈ I

and u � w ; and v � w .

Define a net (xα) in R with index set I by letting xu = 0, xv = π, and
xw = −3.

Where does the net (xα) converge?
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Convergence of nets – Examples

Let I be the collection of all neighborhoods of x with the relation � given
by declaring that

U � V

when U ⊇ V (the direction is given by reverse inclusion).

Then I is a directed set. If xU ∈ U for each U in I , then (xU) is a net in X .

Where does the net (xU) converge?
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Only subbasic neighbourhoods really need to be checked

Theorem 32.

Suppose that S is a subbasis for the topology of a topological space X ,
that (xα)α∈I is a net in X , and that x ∈ X . Then xα → x if and only if
the following is true : For every member U of S that contains x, there is
an αU in I such that xα ∈ U whenver αU � α.

A useful consequence :

If (xα) is a net and
{

P1,P2, . . . ,Pn} is a finite collection of properties for

the terms of the net such that Pj holds from some corresponding net index
value αj onward, then there is an index value α such that P1,P2, . . . ,Pn

all hold from α onward.
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For nets in a topological product, convergence is
equivalent to coordinatewise convergence

Theorem 33.

Let
{

X (α) : α ∈ I
}

be a family of topological spaces and let X be their

topological product. Suppose that (xβ)β∈J is a net in X and x is a

member of X . Then xβ → x if and only if x
(α)
β → x (α) for each α in I .
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Nets characterize Hausdorff spaces

In Hausdorff spaces, every converging sequence has a unique limit.

Sequences can also have unique limits in spaces that are not
Hausdorff.

Example 34.

Consider an uncountable set X with the countable complement topology.
We have seen that limits are unique.
But the space is not Hausdorff.
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Nets characterize Hausdorff spaces

In a Hausdorff space, convergent sequences have unique limits. On the
contrary, nets do succeed in exactly characterizing Hausdorff spaces.

The corresponding statement for nets actually characterizes Hausdorff
spaces among all topological spaces.

Theorem 35.

A topological space X is a Hausdorff space if and only if each convergent
net in X has only one limit.
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Point is in the closure of a set

In a metric space, a point is in the closure of a set if and only if some
sequence from the set converges to that point.

If sequences are replaced by nets, then this remains true for arbitrary
topological spaces.

Theorem 36.

Let S be a subset of a topolgical space X and let x be an element of X .
Then x ∈ S iff some net in S converges to x.
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Point is in the closure of a set

A point x is a limit point of S iff x ∈ S\{x} iff there is a net in S\{x}
converging to x .

We know that a set in a topological space is closed iff it includes its
closure. The following result generalizes the fact that sets in metric spaces
are closed exactly when they are sequentially closed.

Theorem 37.

A subset S of a topolgical space is closed iff S contains every limit of
every net whose terms lie in S.
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Equivalence of continuity and sequential continuity

The following result is a generalization of the equivalence of continuity and
sequential continuity for functions from a metric space into a topological
space.

Theorem 38.

Let X and Y be topological spaces and let f be a functin from X into Y .

1. The function f is continuous at the point x0 of X iff f (xα)→ f (x0)
whenever (xα) is a net in X converging to x0.

2. The function f is continuous on X iff f (xα)→ f (x0) whenever (xα) is
a net in X converging to an x in X .
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When are topolgies same?

Theorem 39.

If two topologies on the same set result in the same convergent nets with
the same limits for those nets, then the two topologies are the same.

Under the hypotheses, the identity map on the space, treated as a map
between the two topological spaces in question, is continuous in each
direction and so is a homeomorphism.
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Conclusion

Nets are one of the many tools used in topology to generalize certain
concepts that may only be general enough in the context of metric
spaces.

Nets are defined to overcome the shortcomings of sequences.

Nets gneralize sequences, but they can go both deeper and wider
then sequences.

Sequences associate a point to every natural number. Nets are more
general, as they can associate a point to every element to a directed
set.
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